《运算定律》教学反思
身为一名人民教师,教学是我们的工作之一,教学的心得体会可以总结在教学反思中,那么大家知道正规的教学反思怎么写吗?下面是小编帮大家整理的《运算定律》教学反思,希望对大家有所帮助。
《运算定律》教学反思1一、调整教材顺序,促进有效教学
“乘法交换律”与“加法交换律”有着相似之处,都是交换数的位置进行运算,结果不变。“乘法的结合律”的教学可以与“加法的结合律”的教学安排在共一课时。学生通过具体事例的举例说明,得出a+b=b+a,再通过讨论得出“交换两个加数的位置,和不变,这叫加法交换律”。然后再安排教学乘法交换律,让学生通过举例说明,得出a×b=b×a,再通过对“加法交换律”概念的类比,推理出“交换两个因数的位置,积不变,这叫做乘法交换律”。再以同一课时或者前后课时,安排教学“加法结合律”与“乘法结合律”,通过举例说明得出a+b+c=a+(b+c),再通过讨论从而得出“先把前两个数相加,或后两个数相加,和不变这叫做加法结合律”。教学乘法结合律时,再通过具体事例得出a×b×c=a×(b×c),再对“加法结合律”的概念的类比推理,得出“先把前两个数相乘,或先把后两个数相乘,积不变,这叫做乘法结合律”。
二、设计对比练习,促进有效教学
在新知识还没有完全掌握的情况下,新知识、新方法会对旧知识、旧方法产生认知障碍。因此,要设计对比练习,让学生从知识与方法的障碍中解脱出来。
学习连加、连减的简便计算后,往往会对加减混合产生方法的影响与方法上的障碍;同样,学习连乘、连除的简便计算后,也会乘除混合的计算产生影响。这种情况下,一定要加强对比练习,让学生从混淆走到清晰,让学生从障碍中走出来。
如,463+82+18,463-82-18,463-82+18
9600×25×49600÷25÷49600÷25×4
三、进行逆向训练,促进有效教学
逆向运用
加法结合律:346+(54+189)=346+54+189
乘法结合律:8×(125×982)=8×125×982
乘法分配律:89×75+89×25=89×(75+25)
减法的性质:894-(94+75)=894-94-75
连除的简便:350÷(7×2)=350÷7÷2
逆向运用训练,有利于培养学生的逆向思维。尤其对a-(b+c)=a-b-c和a÷(b×c)=a÷b÷c的运用在有帮助。因此逆向运用的训练,很有必要。
四、加强应用训练,促进有效教学
例1、求下列图形“L型”菜地的面积;
9厘米21厘米9厘米
例2、学校合唱团99个学生,每人一套报装185元,后来再加上同等价格的指挥服装一套。一共需要多少元?
例3、学校买了5副羽毛球拍,花了330元,还买了25筒羽毛球,每筒羽毛球12个,每筒羽毛球32元。又买了8个篮球。
1、学校一共买了多少个羽毛?
25×12
=25×4×3
2、买羽毛球一共花了多少元?
32×25
=8×4×25
3、每枝羽毛球拍多少元?
330÷5÷2
五、加强错例分析,促进有效教学
例1:25×32×125例2:32×125
=25×4+8×125=4×(8×125)
=4×8×4×125
例3:463-82+18例4:9600÷25×4例5:25×(400+4)
=463-(82+18)=9600÷(25×4)=25×400+4
《运算定律》教学反思2《网络教学已经持续一个多月了,上周我结束了第三单元运算定律的教学,通过研读教师用书,我制定了本单元的教学目标:1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。3.使学生感受数学与现实生活的联系,能运用所学知识解决简单的实际问题。,为了达到这些教学目标,每节课我都认真分析教材,把教学设计做成课件给同学们上课,线上授课每节课只有20分钟左右,而且同学们只能通过连麦来表达自己的想法,有时网不好,连麦需要很长时间,一节课只能几位同学连麦,其它同学老师是听不到他们想法的,所以我会在课前设计一些预习任务,让同学们对本节课老师要讲的内容做到心中有数,上课时就不耽误时间,直接表达自己的想法即可。通过学生作业反馈和回看自己的教学视频,我发现了很多问题。以下是对本单元教学的一些反思。
1:对于加法、乘法的交换律同学们掌握得很好,在课上,同学们能举出一些相应的例子,还能根据这些例子总结相应的定律,同时还能用自己喜欢的方式表示加法、乘法的交换律。同学们的作业也都完成的很好。加、乘法结合律理解起来也不算困难,同学们能在学习了交换律的基础上,迁移运算定律,利用情境理解两种运算顺序的意义,在比较运算意义和计算结果的基础上得到等式,并总结出定律的内容。这几节课,虽然是网络授课,但同学们仍能从已有的知识经验出发,通过观察、交流、归纳,亲历了探究加法、乘法交换律、结合律这个数学问题的过程,从中体验了成功解决数学问题的喜悦或失败的情感。
2:较难理解的是乘法分配律。通过回看视频我发现同学们在课上能用两种方法解决问题,并能说出用每种方法的原因,然后老师和同学们共同发现,这两种方法的结果是一样的,得出等式,归纳出乘法分配律。由于网课的局限性,只有几位同学说了他们的想法,不能听到更同学的想法。通过做题,我才发现学生对乘法分配律不能达到应用自如。部分学生对规律只是浅表认识,不能深刻理解其意义及作用。比如(ab)×c=a×cb×c,左边表示ab个c,右边是a个c加b个c,这样左右存在相等关系。在课上虽然我也是用这种方法讲解的,但有部分同学不太理解。在课上我也没有让同学们举例,只是我在说。这也是导致部分同学不理解的原因。在我以后的授课中我应注意这样的问题。
课上只通过例题得出乘法分配律,但应用起来乘法分配律的变型题目太多。比如:102×15.需要把102变成1002的形式;而99×46需要把99变成100-1的形式;89×4545需要把45变成45×1的形式;28×225—8×225减法这样的形式:还有根据字母表达式直接应用,或从左往右或从右往左应用等等。这些应用技能不是学生短时间内灵活掌握的。由于题型太多,有少部分学生在应用时又回到原点,白费力气。比如105×16,明明拆成1005了。下一步不去分别乘括号外边的数,而是又得到105。
本单元所学习的五条运算定律,不仅适用于整数的加法和乘法,也 ……此处隐藏7777个字……当引放新课的情境,提高了40分钟的课堂效率。
2、实现情境创设激发学生学习新知识的愿望。教学情境是直接为教学目标,教学内容服务的,是学生掌握知识、形成能力、发展心理品质的环境。通过童话故事的情境导入,充分激发学生学习新知的欲望,使学生自觉地进行小数加减简便算法的探索活动,融入新知识的学习中。
3、调动学生已有的生活知识经验,构建数学模型。结合学生原来的生活经验,大胆放手,给学生思考的空间,成为数学学习的主人。在学生独立自行计算,发展学生的个性的基础上,再让学生从不同的算法中比较、悟出整数加法定律在小数计算中同样适用。通过情境中特设计的两道都能用定律进行简便计算的例题,使学生在有限个例证中证实了初步构建的数学模型,懂得能否凑成整数是判断小数加减算式能不能进行简便计算的依据。
《运算定律》教学反思13学完加法交换律后,我感觉内容比较简单,学生也容易理解。做了几个简单练习后,我准备结束这个内容。按照惯例,我问了一句:学了这个定律,你还有什么问题吗?这时马上有学生提出:加法中有交换律,那么减法、乘法、除法中有没有这个定律呢?
我一阵欣喜,学生已经学会了接受新知识时把知识延伸开来。虽然打乱了我这节课的教学计划,我马上引导学生一起来总结刚才是如何学习得到加法交换律的方法,在此基础上提出能不能根据刚才举例—观察—归纳—验证的方法来想一想解决这个问题呢?学生们马上进行小组合作探讨验证。在经过短暂的讨论交流后,同学们一致认为乘法也有交换律,并能举例应用。但说到减法和除法时,有了分歧,开始争论起来。
生1:我认为减法中没有交换律,例如8-5=3,交换被减数和减数的位置5-8就不能减了。
生2:可以减得-3(学生已经从课外学到了负数的知识)
生3:差不一样,所以没有交换律。
这时又有一个同学反驳到8-8=0交换位置后还是8-8=0,我认为减法中有交换律。这时很多同学露出了困惑的神情,到底谁的对呢?短暂的沉默后,马上又有一个同学站起来说:减法中必须被减数和减数相同时,才能出现交换位置差相等的情况,这是很特殊的情况。但加法交换律和乘法交换律是任何数都可以的,所以减法和除法都没有交换律。我带头为这位同学的发言而鼓掌,更为他们的勇气和智慧而高兴。学生们在争论中解决了问题,从中体验到了学习过程中的成功与失败,更加深了知识的理解,培养了学习的能力。
《运算定律》教学反思14“动态生成”是新课程改革的核心理念之一,它要求从生命的高度用动态生成的观点看待课堂教学。正如叶澜教授在《让课堂焕发出生命活力》中说的:“课堂教学应被看作师生人生中的一段重要的生命经历……”因此,教师在课堂教学中不是机械的执行预设方案,而是注重学生的发展,突出学生在课堂上的能动性、创造性和差异性,尊重学生的独立人格,在课堂特定的生态环境中,根据师生、生生互动的情况,顺着学生的思路,因势利导地组织适合学生参与的、自主创新的教学活动。师生平等的对话,互相尊重,让学生的真实想法得以充分的暴露,最大程度的映出学生学习的意愿,擦出思维的火花。
正如我在教学《加法结合律》一课时,不管是多数学生的想法,还是个别学生的“怪论”,我都加以重视,给学生们自主和张扬个性的机会,让真实的动态生成的课堂演绎着学生们的异常的精彩!
当学生们已经掌握了加法结合律并能运用定律解决问题了,我开始让学生们看书质疑。这时,一名学生说:“老师,我觉得书上用字母表示的加法结合律:(a+b)+c=a+(b+c)等号左边(a+b)+c可以写成a+b+c,本来就先算a+b根本不用加括号的。”这一席话马上引起了全班的赞同:“对呀,自左到右算a+b就行了!”教了这些年学时时提醒学生记住定律的字母表达式,还从来没有一个学生对书上的运算定律的字母表达式提出异议的。新课改赋予了学生们更多挑战权威的勇气,给予学生们更多创造、思考的灵气。那么我一定要更加关注课堂的这种动态的形成,让学生占有主体学习地位,让我的课堂更富有生命的活力。所以我已经学会了灵活机智的调整自己的教学过程,把问题再抛给学生,尽量放手让学生们自己提出问题、共同探讨、再解决问题,真正使学生成为学习的主人。“那你们觉得该怎样表示加法结合律呢?”我赶紧反问到。生:“a+b+c=a+(b+c)还可以a+b+c=a+(b+c)=b+(a+c)。”我不禁佩服这个学生的精彩发言了。“这样一来,算式中还运用了什么定律?”“加法交换律!”同学异口同声。“怎样用文字表述呢?”“三个数相加,把其中任意两个数先相加,再加第三个数,和不变。”说的多好啊,不是象书上说的“前两个”,也不是“后两个”,而是不管先加哪两个都行。“我还觉得不止三个数,更多也可以,几个数相加,先把先把其中一些数相加,再和剩下的数相加,和不变。”“很好!大家很有发现的眼睛和思考的头脑。”我赶紧给学生们以鼓励,让他们沉浸在充满成就感的快乐之中……
是啊,当我们把教学看作是师生双方共同探讨新知、课程内容持续生成的时候,一节课究竟是怎样的过程,已经不是我们教师能够在备课方案的预先设计中能够把握在手了。它需要教师在课程预先设计的基础上,循着学生思维的起伏、情感的波澜随时地调整教学环节,动态地生成学习内容,展示课堂教学真实性的精彩。随后,在乘法交换律和乘法分配的学习中,学生们都学会了安自己的意愿和思考总结自己的定律。象除了书上的(a+b)×c=a×c+b×c,还总结出(a-b)×c=a×c-b×c和a×c+b×c+c=(a+b+1)×c、a×c-b×c-c=(a-b-1)×c等等。由此看来,尊重学生的学习需求,尊重学生们的想法,放飞思维的翅膀,让学生在获取知识的同时,产生自己的学习经验,获得丰富的情感体验,那么我们将会欣赏到学生们演绎的缤纷精彩!
《运算定律》教学反思15在教学“整数乘法运算定律推广到分数乘法”这一课后,我做了深刻的反思:
首先我不仅注重了情境的导入,提高孩子们的参与热情。
开启课时,我注重从孩子的身边挖掘素材,引出整数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
同上我还鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。在新授课时,我设计的两个环节,引起了学生强烈的求知欲望。
第一,在复习完后,我让学生自己说说,你现在最想研究一个什么样的问题?孩子们表现出空前的热情,比如有的孩子谈到想研究一下整数乘法运算定律是否可以推广到分数乘法?于是我鼓励学生根据已有的知识,去大胆的猜想。孩子们的思维活跃极了,甚至大大超出了我事先的预料;
第二,在探究确认上述问题后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人,而且也让我懂得的教是为学服务,要想提高教学质量,关键在课堂!